Hitachi-JHU System for the Third DIHARD Speech Diarization Challenge

Shota Horiguchi^{1*} Nelson Yalta^{1*} Paola Garcia² Yuki Takashima¹ Yawen Xue¹ Desh Raj² Zili Huang² Yusuke Fujita¹ Shinji Watanabe² Sanjeev Khudanpur²

Overview of Hitachi-JHU System

VAD

HITACHI Inspire the Next

Method: Posterior average of two models

- SincNet-based VAD [Lavechin+, INTERSPEECH'20]
 - SincNet followed by BiLSTM layers and a fully-connected layer
 - Trained on DIHARD III DEV for 300 epochs

TDNN-based VAD

- Five-layer TDNN using statistics pooling for long-context
- Trained on DIHARD III DEV for 10 epochs with data augmentation using MUSAN corpus and simulated RIRs

Results on DIHARD III DEV

Method	False alarm (%)	Missed (%)
SincNet-based VAD	2.78	2.51
TDNN-based VAD	2.85	2.80
Posterior average	2.58	2.55

(1) Res2Net-Based System

X-vector extractors trained on VoxCeleb

Model	# of layers	Normalization	Compression	SpecAugment
Res2Net-BN	23	BatchNorm	$\ln x$	
Res2Net-UN	23	UtteranceNorm	$\log_{10} x$	
Res2Net-BN-Large	50	BatchNorm	$\ln x$	
Res2Net-UN-Large	50	UtteranceNorm	$\log_{10} x$	\checkmark

VBx clustering

- > Initial clustering using AHC with PLDA, the interpolation of VoxCeleb PLDA and DIHARD III PLDA
- > Then, Bayesian HMM clustering with the LDA

Overlap assignment

- > The same model as SincNet-based was trained to detect overlap using DIHARD III DEV
- > Assigned the closest other speaker in the time axis for each detected frame
- Modified DOVER-Lap to combine the results from the four models

DERs/JERs (%) of DIHARD III Track 1 DEV

	Res2Net-BN	Res2Net-UN	Res2Net-BN-Large	Res2Net-UN-Large			
	 • 23 layers • BatchNorm • ln x 	 23 layers UttteranceNorm log₁₀ x 	• 50 layers • BatchNorm • $\ln x$	 50 layers UtteranceNorm log₁₀ x SpecAugment 			
X-vector + Auto-tuning Spectral Clustering	17.09 / 35.69	17.53 / 37.15	16.96 / 35.77	17.55 / 36.78			
X-vector + VBx	17.24 / 37.12	17.04 / 36.17	16.85 / 35.86	17.08 / 35.95			
X-vector + VBx + OvlAssign	14.89 / 35.64	14.72 / 34.65	14.56 / 34.31	14.74 / 34.40			
DOVER-Lap		1	4.04 / 34.29				

(2) TDNN-Based System

X-vector extractor

- > TDNN-based model in the Kaldi VoxCeleb recipe [Snyder+, ICASSP'19]
 - Input: 40-dimensional filterbanks, with a 25 ms window and 15 ms shift
 - Output: 512-dimensional embeddings
- VBx clustering (Same as Res2Net-based system)
 - > Initial clustering using AHC with PLDA, the interpolation of VoxCeleb PLDA and DIHARD III PLDA
 - > Then, Bayesian HMM clustering with the LDA
- Overlap assignment (Same as Res2Net-based system)
 - > The same model as SincNet-based was trained to detect overlap using DIHARD III DEV
 - > Assigned the closest other speaker in the time axis for each detected frame

	DER (%)	JER (%)
X-vector + VBx	16.33	34.18
X-vector + VBx + OvlAssign	13.87	32.73

Results of DIHARD III Track 1 DEV

(3) EEND-EDA-Based System

EEND-EDA [Horiguchi+, INTERSPEECH'20]

Method

- Calculate a flexible number of attractors from embeddings using an LSTM encoder-decoder
- Then calculate diarization results based on the dot products of the attractors and embeddings

Training

- Train the model for 100 epochs using simulated two-speaker mixtures created from Switchboard and NIST SRE
- Finetune the model for 75 epochs using simulated mixtures, each of which contains at most 5 speakers (instead of 4 in the IS paper)
- Adapt the model for using the DIHARD III DEV

Issue 1

EEND-EDA performs VAD and diarization simultaneously
 Need to incorporate with external VAD if the oracle or more accurate VAD is given

Solution 1: VAD post-processing

- Remove false alarms using VAD
- Recover missed speech by assigning the speaker with the highest posteriors using VAD

Issue 2

- EEND-EDA cannot produce diarization results of large number of speakers (>5)
- Solution 2-1: Iterative inference
 - > Decode 5 speakers repeatedly until EEND output less than 5 speakers

> Problem: The 6th speaker's speech activities are never overlapped with the 1st-5th speakers

Issue 2

EEND-EDA cannot produce diarization results of large number of speakers (>5)

Solution 2-2: Iterative inference + DOVER-Lap

- > Decode at most k speakers at the first iteration (k=1,2,3,4,5)
- Decode at most 5 speakers from the second iteration
- > Finally, the five estimated results are combined using DOVER-Lap

Results of DIHARD III Track 1 DEV

Model	Remove false alarms	Recover missed speech	Iterative inference	Iterative inference +DOVER-Lap	DER	JER
4-speaker model [Horiguchi+, INTERSPEECH'20]					21.06	41.63
					18.77	38.98
	\checkmark				17.33	37.92
5-speaker model	\checkmark	\checkmark			13.08	35.38
	\checkmark	\checkmark	\checkmark		13.35	34.19
	\checkmark	\checkmark		\checkmark	12.92	33.85

(4) SC-EEND-Based System

© Hitachi, Ltd. 2021. All rights reserved.

Speaker-wise conditional EEND (SC-EEND) [Fujita+, arXiv'20]

- Method
 - Estimate each speaker's speech activities sequentially, conditioned on previously estimated speaker's speech activities
 - We replaced Transformer encoders with Conformer [Gulati+, INTERSPEECH'20] encoders
 - VAD post-processing was also applied as in SA-EEND-based system
 - Training
 - Train the model for 200 epochs using simulated mixtures, each of which contains at most 4 speakers
 - Adapt the model for another 100 epochs using the DIHARD III DEV set

(5) TDNN-Based X-vectors + EEND as Post-Processing

HITACHI

EEND as Post-Processing [Horiguchi+, arXiv'20]

Motivation

- > X-vector-based system
 - ✓ can deal with large number of speakers
 - * has difficulty on overlap processing
- EEND-based system
 - ✓ Can handle overlapping speech
 - cannot deal with large number of speakers

Method

- Update diarization results of x-vector-based system using EEND by applying the following steps iteratively
 - 1. Frame selection to contain only two speakers
 - 2. Overlap estimation using an EEND model

Initial results (from x-vector clustering)

 frame index
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12

 Spk 1
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I

Processing order Spks 2&3 (#Frames = |1,4,5,6,7,8,9,10,11,12| = 10) \downarrow Spks 1&3 (#Frames = |1,2,3,7,8,9,10,11,12| = 9) \downarrow Spks 1&2 (#Frames = |2,3,4,5,6,10,11| = 7)

Spk 1

Spk 2

Spk 3

HITACHI

HITACHI

HITACHI

Final results (Results after Update #3)

Processing order Spks 2&3 ↓ Spks 1&3 ↓ Spks 1&2

Results of DIHARD III Track 1 DEV

	DER (%)	JER (%)
X-vector + VBx	16.33	34.18
X-vector + VBx + OvlAssign (System (2))	13.87	32.73
X-vector + VBx + EENDasP	12.63	31.52

HITACHI

(6) Modified DOVER-Lap

DOVER-Lap [Raj+, SLT'21]

- > Method to combine overlap-aware diarization results
- > We modified the processing when multiple speakers have the same rank
 - **Original**: Assigns uniformly-divided regions for each speaker
 - **Modified**: Assigns the region for all the tied speakers without any division
- > In addition, we introduced a weighting mechanism to change the importance of each system

Results of DIHARD III Track 1 DEV

Method	DER (%)	JER (%)
(1) Res2Net-based x-vector + VBx + OvlAssign	14.04	34.29
(2) TDNN-based x-vector + VBx + OvlAssign	13.87	32.73
(3) EEND-EDA	12.92	33.85
(4) SC-EEND	13.13	35.35
(5) TDNN-based x-vector + VBx + EENDasP	12.63	31.52
DOVER-Lap	12.07	32.29
Modified DOVER-Lap	10.73	31.39
Modified DOVER-Lap + manual weighting	10.68	31.01

	Track 1			Track 2				
	DEV		EVAL		DEV		EV	AL
	full	core	full	core	full	core	full	core
Baseline	19.41	20.25	19.25	20.65	21.71	22.28	25.36	27.34
(1) Res2Net-based x-vector + VBx + OvlAssign	14.04	15.18	15.81	18.47	17.26	18.39	21.37	24.64
(2) TDNN-based x-vector + VBx + OvlAssign	13.87	14.88	15.65	18.20	17.61	18.64	21.47	24.58
(3) EEND-EDA	12.92	13.95	13.95	17.28	15.90	18.50	19.04	22.84
(4) SC-EEND	13.13	16.05	15.16	19.14	16.16	19.00	20.30	24.75
(5) TDNN-based x-vector + VBx + EENDasP	12.63	14.61	13.30	15.92	15.94	18.09	18.13	21.31
(6) DOVER-Lap of (1)(2)(3)(4)(5)	10.73	12.56	11.83	14.41	14.13	16.06	17.21	20.34

Use (6) for self-supervised adaptation (SSA) of EEND-EDA

- Created pseudo labels for the EVAL set and redid the adaptation
- We also tried SSA of SC-EEND, but the DOVER-Lap results became bad

DERs with Self-Supervised Adaptation of EEND-EDA

	Track 1				Track 2			
	Dev		Eval		Dev		Eval	
	full	core	full	core	full	core	full	core
Baseline	19.41	20.25	19.25	20.65	21.71	22.28	25.36	27.34
(1) Res2Net-based x-vector + VBx + OvlAssign	14.04	15.18	15.81	18.47	17.26	18.39	21.37	24.64
(2) TDNN-based x-vector + VBx + OvlAssign	13.87	14.88	15.65	18.20	17.61	18.64	21.47	24.58
(3) EEND-EDA ↓	12.92 ↓	13.95 ↓	13.95 ↓	17.28 ↓	15.90 ↓	18.50 ↓	19.04 ↓	22.84 ↓
(7) EEND-EDA <mark>(SSA)</mark>	12.95	15.69	12.74	15.86	15.03	17.52	17.81	21.31
(4) SC-EEND	13.13	16.05	15.16	19.14	16.16	19.00	20.30	24.75
(5) TDNN-based x-vector + VBx + EENDasP ↓	12.63 ↓	14.61 ↓	13.30 ↓	15.92 ↓	15.94 ↓	18.09 ↓	18.13 ↓	21.31 ↓
(8) TDNN-based x-vector + VBx + EENDasP (SSA)	12.54	14.55	12.74	15.34	15.45	17.77	17.60	20.84
(6) DOVER-Lap of (1)(2)(3)(4)(5) ↓	10.73 ↓	12.56 ↓	11.83 ↓	14.41 ↓	14.13 ↓	16.06 ↓	17.21 ↓	20.34 ↓
(9) DOVER-Lap of $(1)(2)(7)(4)(8) \rightarrow$ Submitted	10.65	12.74	11.58	14.09	13.85	15.81	16.94	20.01

Conclusion

System highlights

- SincNet-based and TDNN-based VAD
- Modified DOVER-Lap of five subsystems
 - Res2Net-based and TDNN-based x-vector systems
 - EEND-based systems with VAD post-processing and iterative inference
 - TDNN x-vectors + EEND as post-processing system
- Self-supervised adaptation of EEND
- Results from the leaderboard
 - Track 1
 - Full: DER=11.58 % (2nd place)
 - Core: DER=14.09 % (2nd place)
 - Track 2
 - Full: DER=16.94 % (2nd place)
 - Core: DER=20.01 % (3rd place)

